
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Sang Michael Xie 1 2 Hieu Pham 1 Xuanyi Dong 1 Nan Du 1 Hanxiao Liu 1 Yifeng Lu 1

Percy Liang 2 Quoc V. Le 1 Tengyu Ma 2 Adams Wei Yu 1

Abstract

The mixture proportions of pretraining data

domains (e.g., Wikipedia, books, web text) greatly

affect language model (LM) performance. In this

paper, we propose Domain Reweighting with Min-

imax Optimization (DoReMi), which first trains

a small proxy model using group distributionally

robust optimization (Group DRO) over domains

to produce domain weights (mixture proportions)

without knowledge of downstream tasks. We then

resample a dataset with these domain weights and

train a larger, full-sized model. In our experiments,

we use DoReMi on a 280M-parameter proxy

model to find domain weights for training an

8B-parameter model (30x larger) more efficiently.

On The Pile, DoReMi improves perplexity across

all domains, even when it downweights a domain.

DoReMi improves average few-shot downstream

accuracy by 6.5% over a baseline model trained

using The Pile’s default domain weights and

reaches the baseline accuracy with 2.6x fewer

training steps. On the GLaM dataset, DoReMi,

which has no knowledge of downstream tasks,

even matches the performance of using domain

weights tuned on downstream tasks.

1. Introduction

Datasets for training language models (LMs) are typically

sampled from a mixture of many domains (Gao et al.,

2020; Du et al., 2021; Chowdhery et al., 2022; Brown

et al., 2020). For example, The Pile (Gao et al., 2020), a

large publicly available dataset, is composed of 24% web

data, 9% Wikipedia, 4% GitHub, etc.1 The composition of

the pretraining data greatly affects the effectiveness of an

1Google 2Stanford University. Correspondence to:
Sang Michael Xie <xie@cs.stanford.edu>, Adams Wei Yu
<adamsyuwei@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1The domain weights, which are based on token count in this
paper, varies by tokenizer; see Appendix C.

LM (Du et al., 2021; Hoffmann et al., 2022; Xie et al., 2023).

However, it is unclear how much of each domain to include

to produce a model that performs well for a wide variety of

downstream tasks.

Existing works determine domain weights (the sampling

probabilities for each domain) by using intuition or a set of

downstream tasks. For example, The Pile uses heuristically-

chosen domain weights, which could be suboptimal. On the

other hand, existing LMs such as PaLM (Chowdhery et al.,

2022) and GLaM (Du et al., 2021) tune the domain weights

based on a set of downstream tasks, but requires training

potentially thousands of LMs on different domain weights

and risks overfitting to the particular set of downstream tasks.

Instead of optimizing domain weights based on a set of down-

stream tasks, our approach aims to find domain weights

which lead to models that perform well on all domains by min-

imizing the worst-case loss over domains. A naive worst-case

approach would upweight the domains with the most noisy

data, as every domain has a different optimal loss (aka, the

entropy). To make the domain perplexities comparable, we

follow Oren et al. (2019); Mindermann et al. (2022) and opti-

mize the worst-case excess loss, which is the loss gap between

the model being evaluated and a pretrained reference model.

This motivates our algorithm, Domain Reweighting with

Minimax Optimization (DoReMi), which leverages distri-

butionally robust optimization (DRO) to tune the domain

weights without knowledge of downstream tasks (Figure 1).

First, DoReMi trains a small reference model (e.g., 280M

parameters) in a standard way. Second, we train a small

distributionally robust language model (DRO-LM) (Oren

et al., 2019), which minimizes the worst-case excess loss

(relative to the reference’s model’s loss) across all domains.

Notably, rather than using the robust LM, we take the domain

weights produced by DRO training. Finally, we train a large

(8B) LM on a new dataset defined by these domain weights.

Our approach adapts the DRO-LM framework (Oren et al.,

2019) to optimize domain weights instead of producing

a robust model. To do this, we use the online learning-

based optimizer from Group DRO (Sagawa et al., 2020;

Nemirovski et al., 2009), which dynamically updates domain

weights according to the loss on each domain for rescaling

the training objective, instead of sub-selecting examples

1

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Figure 1: Given a dataset with a set of domains, Domain Reweighting with Minimax Optimization (DoReMi) optimizes

the domain weights to improve language models trained on the dataset. First, DoReMi uses some reference domain weights

to train a reference model (Step 1). The reference model is used to guide the training of a small proxy model using group

distributionally robust optimization (Group DRO) over domains (Oren et al., 2019; Sagawa et al., 2020; Nemirovski et al.,

2009), which we adapt to output domain weights instead of a robust model (Step 2). We then use the tuned domain weights

to train a large model (Step 3).

Figure 2: DoReMi optimizes domain weights with a small

model (280M params) and uses these domain weights to

train a much larger model (8B params, 30x larger). Here,

optimizing the domain weights (training a small model

twice) takes 8% of the compute of training the large model.

DoReMi improves average one-shot downstream accuracy

by 6.5% and reaches the baseline accuracy 2.6x faster when

pretraining on The Pile.

from a minibatch as in Oren et al. (2019); Mindermann et al.

(2022). Finally, DoReMi takes the averaged domain weights

over DRO training steps.

In Section 3, we run DoReMi on 280M proxy and reference

models to optimize domain weights on The Pile (Gao et al.,

2020) and the GLaM dataset (Du et al., 2021) (used in

PaLM (Chowdhery et al., 2022)). The DoReMi domain

weights are used to train an 8B parameter LM (over 30x

larger). On The Pile, DoReMi reduces perplexity on all

domains over baseline domain weights, even when it down-

weights a domain. DoReMi improves average downstream

accuracy over a baseline model trained on The Pile’s default

domain weights by 6.5% on generative few-shot tasks and

achieves the baseline downstream accuracy 2.6x faster

(Figure 2). We publish the tuned domain weights for The

Pile to improve future LMs trained with The Pile (Table 1).

In Section 4, we find that DoReMi consistently improves LM

training when varying the sizes of the proxy model and the

main model trained with optimized domain weights. On the

GLaM dataset where domain weights tuned on downstream

tasks are available, DoReMi even performs comparably to

tuning domain weights on downstream task performance.

2. Domain Reweighting

with Minimax Optimization (DoReMi)

In this section we define DoReMi, an algorithm for using

a small proxy model to optimize the domain weights of a

language modeling dataset, which then improves the training

of a large model.

Setup. Suppose that we have k domains (e.g., Wikipedia,

GitHub), where for each domain i, we have a set of examples

Di. Domain weights α ∈ ∆k specify a probability distri-

bution over the k domains, and consequently a distribution

over the training data: Pα =
∑k

i=1 αi · unif(Di) where

unif(D)= 1
|D|

∑

x∈Dδx is the uniform distribution over the

examples in D and δx(x
′) is 1 if x′=x and 0 otherwise.

DoReMi. The inputs of DoReMi are the data D1,...,Dk,

reference domain weights αref, and training hyperparameters

for the large, full-size model (number of training steps T and

batch size b). DoReMi returns optimized domain weights

ᾱ and ultimately, a large model trained on Pᾱ.

Step 1: Obtain a small reference model. We first train

a model pref on some reference domain weights αref (e.g.,

2

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

uniform domain weights as a default) for T steps, batch

size b. This model serves as the reference model for

step 2 and captures a baseline level of difficulty of each

example/domain. The reference model can be a relatively

small model (280M parameters in our experiments).

Step 2: Train proxy model with Group DRO to obtain

domain weights. To obtain domain weights, we train a

small proxy model pθ in the distributionally robust language

modeling (DRO-LM) (Oren et al., 2019) framework with the

Group DRO optimizer (Sagawa et al., 2020), where θ are the

weights of the proxy model. This framework trains a robust

model by optimizing the worst-case loss over domains,

which is equivalent to the following minimax objective:

min
θ

max
α∈∆k

L(θ,α)=

min
θ

max
α∈∆k

k
∑

i=1

αi ·

[

1
∑

x∈Di
|x|

∑

x∈Di

ℓθ(x)−ℓref(x)

]

(1)

where the losses ℓθ(x) = − log pθ(x) and

ℓref(x) = − log pref(x) are the negative log-likelihoods of

the proxy and reference models respectively in this paper,

and |x| is the token length of an example x. The objective

aims to minimize the worst-case excess loss across domains

because the inner maximization over α puts all the weight

on the domain with the highest excess loss.

Intuitively, the excess loss (ℓθ(x)− ℓref(x)) measures the

headroom for the proxy model to improve, with respect to

the reference model, on example x. Examples with higher

excess loss are those where the reference model achieves

low loss (such that the example is “learnable”) but the proxy

model still has high loss. Examples with low excess loss may

be very high entropy (i.e. optimal loss is high, and thus the

reference loss is high) or very low entropy (i.e., easy to learn,

and thus the proxy loss is low). The Group DRO optimizer

works by interleaving exponentiated gradient ascent updates

on domain weights αt with gradient updates on the proxy

model weights θt over training steps t. The optimizer updates

αt to upweight domains with high excess loss, which scales

up the proxy model’s gradient update on examples from these

domains. Following Nemirovski et al. (2009), we return the

average weights over the training trajectory ᾱ= 1
T

∑T

i=1αt

as the optimized domain weights to use in step 3.

Step 3: Train large model with new domain weights.

The tuned domain weights ᾱ define a new training dis-

tribution Pᾱ. We train a main model (larger than the

reference/proxy models) on data from this new distribution

using a standard training procedure.

Details for Step 2. Algorithm 1 provides the pseudocode

for Step 2. The main structure of Algorithm 1 is a training

loop which updates the proxy model over T steps. At each

Algorithm 1 DoReMi domain reweighting (Step 2)

Require: Domain data D1,...,Dk, number of training steps

T , batch size b, step size η, smoothing parameter c∈ [0,1]
(e.g., c=1e-4 in our implementation).

Initialize proxy weights θ0
Initialize domain weights α0=

1
k
1

for t from 1 to T do

Sample minibatch B={x1,...,xj} of size b from Pu,

where u= 1
k
1

Let |x| be the token length of example x (|x|≤L)

Compute per-domain excess losses for each domain

i∈{1,2,...,k} (ℓθ,j(x) is j-th token-level loss):

λt[i] ←
1∑

x∈B∩Di
|x|

∑

x∈B∩Di

∑|x|
j=1 max{ℓθt−1,j(x) −

ℓref,j(x),0}
Update domain weights (exp is entrywise):

α′
t←αt−1exp(ηλt)

Renormalize and smooth domain weights:

αt←(1−c)
α′

t∑
k

i=1
α′

t
[i]
+cu

Update proxy model weights θt for the objective

L(θt−1,αt) (using Adam, Adafactor, etc.)

end for

return 1
T

∑T

t=1αt

step, we follow Sagawa et al. (2020) and sample a minibatch

with uniform domain weights (regardless of the reference

domain weights αref, which only affects the reference

model). We then compute the per-domain excess losses,

normalized by the total number of tokens in each domain,

and use them to update the domain weights αt at each step.

We first compute the per-domain excess loss at a per-token

level and then aggregate, where the token-level losses at

index j are ℓθt−1,j(x) = − log pθ(xj | x1, ... , xj−1) and

ℓref,j(x)=−log pref(xj |x1,...,xj−1). We clip the per-token

excess loss at 0 to maintain a non-negative loss value, which

is necessary for the basic guarantees of the Group DRO

optimizer (Sagawa et al., 2020) and is rarely needed in

practice, but this means that we do not strictly optimize the

minimax objective. Finally, we update the proxy model for

the objective L(θt−1,αt) using a standard optimizer such

as Adam (Kingma and Ba, 2015) or Adafactor (Shazeer and

Stern, 2018). We set the domain weight update step size to

η=1 and the smoothing parameter to c=1e-4 in all our exper-

iments and did not extensively tune these hyperparameters.

Iterated DoReMi. We extend DoReMi by running it for

multiple rounds, setting the reference domain weights αref

for the next round to be ᾱ from the previous round. We

call this iterated DoReMi. The entire iterated process still

only uses small models for tuning domain weights. We

stop iterating when the domain weights converge, which

we define as when maximum change in any domain weight

3

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

‖ᾱ−αref‖∞ is less than 1e-3. Empirically, this takes only

3 rounds on the GLaM dataset (Section 3.2).

3. DoReMi Improves

LM Training Efficiency and Performance

In this section, we use DoReMi domain weights optimized

with a 280M-parameter proxy model to train a 8B-parameter

main model (30x larger). We consider two datasets, The

Pile (Gao et al., 2020) and the GLaM training set (Du et al.,

2021). On The Pile, DoReMi reduces perplexity significantly

on every domain, improves average downstream accuracy

on generative one-shot tasks by 6.5%, and achieves the

baseline accuracy 2.6x faster. On the GLaM dataset

where domain weights tuned on downstream datasets are

available, DoReMi finds domain weights with comparable

performance to downstream-tuned domain weights.

3.1. Experimental setup

The Pile dataset. The Pile (Gao et al., 2020) is a 800GB

text dataset with 22 domains (Table 1). The default domain

weights were determined heuristically. We use the default

domain weights from The Pile dataset to train the baseline

and as the reference domain weights αref for DoReMi (see

(a) The Pile

(b) GLaM dataset

Figure 3: Average one-shot downstream accuracy (exact

match) on 5 tasks, with 8B parameter models trained on

The Pile (top) and the GLaM dataset (bottom). On The

Pile, DoReMi improves downstream accuracy by 6.5% and

achieves the baseline accuracy 2.6x faster (same plot as

Figure 2). On the GLaM dataset, iterated DoReMi (round

2) attains comparable performance to domain weights tuned

with downstream tasks.

Appendix C).

GLaM dataset. The GLaM dataset (Du et al., 2021) (also

used in training PaLM (Chowdhery et al., 2022)) includes

text from 8 domains (Table 2). For comparison, the GLaM

domain weights (downstream-tuned) were tuned according

to the downstream performance of models trained on each

domain and the size of each domain (Du et al., 2021). We

use uniform domain weights both for training the baseline

and the reference domain weights αref for DoReMi.

Training setup. We train Transformer (Vaswani et al.,

2017) decoder-only LMs with the standard next-token lan-

guage modeling loss. We conduct a controlled comparison by

equalizing the amount of compute, measured by the number

of tokens processed during training. For The Pile, we train

each model for 200k steps; for the GLaM dataset, we train

each model for 300k steps. All models use a batch size of 512

and maximum token length of 1024. The proxy and reference

models have 280M parameters. All models are trained from

scratch (other hyperparameters are in Appendix C).

Evaluation. We use held-out validation data to measure

the perplexity on each domain. For downstream evaluation,

we use the generative one-shot tasks from the GPT-3

paper (Brown et al., 2020): TriviaQA (Joshi et al., 2017),

NaturalQuestions (Kwiatkowski et al., 2019), WebQues-

tions (Berant et al., 2013), SQuADv2 (Rajpurkar et al.,

2018), and LAMBADA (Paperno et al., 2016). We use the

standard exact-match accuracy metric for the these datasets.

Compute used for optimizing domain weights. We

train two 280M models (the reference and proxy models)

to optimize the domain weights. This is 8% of the FLOPs

required to train the main 8B model. All FLOPs come from

standard forward and backward passes.

Notation for model sizes in DoReMi. We denote the

size of the reference/proxy models (which are always the

same size in our experiments) and the size of the main

model trained with DoReMi domain weights as “DoReMi

(size of reference/proxy→size of main model)”: for

example, DoReMi (280M→8B). When we are discussing

the optimized domain weights independently of the main

model, we only include one number (e.g., DoReMi (280M))

which refers to the reference/proxy model size.

3.2. DoReMi

improves perplexity and downstream accuracy

We show that DoReMi significantly improves both the

perplexity and downstream accuracy of 8B models trained

on The Pile and the GLaM dataset over their respective

baseline domain weights.

4

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Figure 4: Per-domain log-perplexity of 8B models on The Pile. Despite downweighting some domains, DoReMi improves

log-perplexity on all domains.

Downstream accuracy improves on The Pile. Figure 3

(top) shows the average downstream performance for base-

line and DoReMi (280M→8B) models on The Pile. DoReMi

improves the downstream accuracy by 6.5% and achieves

the baseline accuracy within 75k steps — 2.6x faster than

the baseline (200k steps). Thus, DoReMi can dramatically

speed up training and improve downstream performance.

DoReMi can reduce perplexity across all domains with-

out a tradeoff. Figure 4 shows the per-domain perplexity

of the 8B models on The Pile. DoReMi significantly reduces

the perplexity over the baseline across all domains, despite al-

locating lower weight to some domains. How can this occur?

Intuitively, the domains with the lowest and highest entropy

can be downweighted without impacting the perplexity much.

The lowest entropy domains statistically require few samples

to learn. The highest entropy domains have token distribu-

tions that are close to common uniform priors — for example,

models at random initialization tend to output a uniform next

token distribution. Thus, we need less samples to fit these

domains. Positive transfer from allocating more samples to

medium entropy domains can then improve perplexity on all

domains. In Appendix D, we provide a simple example where

reweighting domains can improve perplexity on all domains

and DoReMi finds such domain weights in simulations.

Iterated DoReMi achieves performance of downstream-

tuned weights on the GLaM dataset. We employ iterated

DoReMi on the GLaM dataset over 3 rounds. We find

that the second and third round domain weights are almost

identical (Table 2). Figure 3 (bottom) shows one-shot results

for the first two rounds of iterated DoReMi. After the first

round, the DoReMi main model has comparable downstream

accuracy to the baseline (uniform domain weights). After the

second round, the DoReMi main model achieves comparable

downstream accuracy to downstream-tuned domain weights.

Overall, domain reweighting has a smaller effect on GLaM,

Table 1: Domain weights on The Pile. Baseline domain

weights are computed from the default Pile dataset. DoReMi

(280M) uses a 280M proxy model to optimize the domain

weights.

Baseline DoReMi (280M)

Pile-CC 0.1121 0.6057

PubMed Central 0.1071 0.0046

Books3 0.0676 0.0224

OpenWebText2 0.1247 0.1019

ArXiv 0.1052 0.0036

Github 0.0427 0.0179

FreeLaw 0.0386 0.0043

StackExchange 0.0929 0.0153

USPTO Backgrounds 0.0420 0.0036

PubMed Abstracts 0.0845 0.0113

Gutenberg (PG-19) 0.0199 0.0072

OpenSubtitles 0.0124 0.0047

Wikipedia (en) 0.0919 0.0699

DM Mathematics 0.0198 0.0018

Ubuntu IRC 0.0074 0.0093

BookCorpus2 0.0044 0.0061

EuroParl 0.0043 0.0062

HackerNews 0.0075 0.0134

YoutubeSubtitles 0.0042 0.0502

PhilPapers 0.0027 0.0274

NIH ExPorter 0.0052 0.0063

Enron Emails 0.0030 0.0070

possibly because there are only 8 domains compared to 22

in The Pile.

Inspecting the DoReMi domain weights. Tables 1 and 2

present the DoReMi domain weights for The Pile and

the GLaM dataset. When running DoReMi on a 280M

proxy model (DoReMi (280M)), most weight is put on the

diverse Pile-CC web text domain. Note that Wikipedia is

5

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Table 2: Domain weights in the GLaM dataset. Iterated

DoReMi (280M) converges within 3 rounds, with a similar

overall pattern to domain weights tuned on downstream tasks.

DoReMi Downstream-
tunedR1 R2 R3

Wikipedia 0.09 0.05 0.05 0.06

Filtered web 0.44 0.51 0.51 0.42

Conversations 0.10 0.22 0.22 0.27

Forums 0.16 0.04 0.04 0.02

Books 0.11 0.17 0.17 0.20

News 0.10 0.02 0.02 0.02

downweighted in comparison to the baseline, but DoReMi

still improves the downstream accuracy on tasks derived

from Wikipedia (e.g., TriviaQA, Appendix Table 5). On the

GLaM dataset, the DoReMi weights have the same general

pattern as the downstream-tuned domain weights. DoReMi

is able to recover a similar set of domain weights by starting

from uniform reference domain weights, without any use

of downstream data.

4. Ablations and Analysis Across Scales

Previously in Section 3, we showed that DoReMi finds

domain weights using 280M models that can improve

training of 8B models. In this section, we conduct an analysis

of DoReMi where we vary the scale of the proxy model in

relation to the main model and ablate the components of the

excess loss objective.

DoReMi improves LMs consistently across scales. We

consider using proxy and main models of the same size to

analyze DoReMi’s behavior in a simple setting, without the

need for the domain weights to generalize across scales. In

particular, we run DoReMi (X→X) where X is 280M, 510M,

760M, or 1B on The Pile. Figure 5 shows that DoReMi con-

sistently improves downstream accuracy over the baseline by

2% and achieves the baseline accuracy 4x faster on average

across scales, and this improvement does not shrink with

larger model size. DoReMi improves the worst-case perplex-

ity on all scales and improves 18 of 22 individual domain

perplexities on average across scales (Appendix Table 6).

Proxy model underperforms main model, especially at

larger sizes. Recall that DoReMi uses Group DRO to

train a proxy model, which reweights the objective with the

domain weights. In contrast, the main model is trained by

resampling on the domain weights from DoReMi. When the

proxy model and the main model are the same size, which

one is the better model? Table 3b shows that the proxy model

typically underperforms the main model in this case. The

gap between the proxy and main model increases with scale,

Table 3: Summary of per-domain perplexities on The Pile

(22 total domains). Average perplexity is an unweighted

average of the per-domain perplexities.

(a) Varying the size of the proxy/reference model and training at 8B.

Worst-case
pplx Avg pplx

domains
besting baseline

Baseline (8B) 1.71 1.64 0/22

DoReMi (70M->8B) 1.63 1.53 22/22

DoReMi (150M->8B) 1.56 1.52 22/22

DoReMi (280M->8B) 1.46 1.40 22/22

DoReMi (1B->8B) 1.58 1.54 22/22

(b) Perplexity of the DoReMi main model and proxy model of the
same size. Although the 1B proxy model is relatively poor quality,
the resulting domain weights still improve the main model.

Worst-case
pplx Avg pplx

domains
besting baseline

Baseline (280M) 2.39 2.32 0/22

DoReMi (280M->280M) 2.19 2.13 22/22

Proxy (280M) 2.33 2.27 19/22

Baseline (1B) 1.94 1.87 0/22

DoReMi (1B->1B) 1.92 1.83 19/22

Proxy (1B) 2.11 2.02 0/22

as the 1B proxy model not only underperforms the 1B main

model but also the 1B baseline model, while the 280M proxy

model achieves better perplexity than the 280M baseline

model on 19/22 domains. Despite the relatively poor quality

of the 1B proxy model, the domain weights still allow the

1B main model to achieve the baseline performance over

2x faster. This suggests that DoReMi is quite robust to any

suboptimalities in the minimax optimization procedure.

However, we hypothesize that the mismatch between

the proxy and main model training (loss reweighting vs.

resampling) explains their performance difference and

therefore a resampling-based Group DRO optimizer may

improve DoReMi for larger proxy models.

Effect of proxy model scale on larger main model’s

performance. We consider 70M, 150M, 280M, and 1B

scales for the DoReMi proxy model while fixing the main

model size at 8B (DoReMi (X→8B)). From 70M to 280M,

increasing the proxy model size improves downstream

accuracy at 8B (Figure 6 top). We hypothesize that this trend

does not continue for the 1B proxy model because the Group

DRO optimizer is worse at larger scales (Table 3b). While

DoReMi (280M→8B) results in the most improvement

at 8B, DoReMi (150M→8B) and DoReMi (1B→8B) still

achieve the baseline accuracy almost 2x faster. This suggests

that DoReMi is robust to the proxy model scale.

Choosing the easiest or hardest domains do not suffice.

We ablate the components of the excess loss metric

ℓθ(x)− ℓref(x) by running DoReMi using only the loss of

6

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Figure 5: Average one-shot downstream accuracy across 4 model scales (280M, 510M, 760M, 1B) where the reference/proxy

models for DoReMi are the same size as the main model trained with DoReMi domain weights. DoReMi consistently

improves downstream accuracy across scales, with a similar 3% accuracy gap at 200k steps at most scales (except for 510M).

DoReMi achieves the baseline accuracy 4x faster on average across scales.

the proxy model pθ on example x, i.e. ℓθ(x) (prefer hardest

domains for the proxy model) or only the negative loss

of the reference −ℓref(x) (prefer easiest domains for the

reference model). Figure 6 (right) shows that neither of the

components of the excess loss alone are sufficient to achieve

the gains of DoReMi.

5. Related Work

Curating pretraining data for LMs. Most closely

related is the GLaM dataset (Du et al., 2021) (also used for

training PaLM (Chowdhery et al., 2022)), which has domain

weights that are tuned using downstream data. Optimizing

domain weights for downstream tasks can be expensive and

could require search/zero-order optimization (Snoek et al.,

2012), RL (Zoph and Le, 2016), or heuristic assumptions

on how positive/negative transfer between domains work.

Example-level filtering also brings benefits for LM training.

The C4 dataset (Raffel et al., 2019) shows gains over

CommonCrawl via heuristic data cleaning methods. Du

et al. (2021); Xie et al. (2023) show that filtering the data

at an example level for high-quality text that look like

Wikipedia and books can significantly improve downstream

performance for LMs. In contrast to these works, DoReMi

sets domain weights automatically with only 2 small LM

training runs and do not make assumptions about the type

of data to prefer (Wikipedia-like, etc.).

General data selection methods. Moore-Lewis selec-

tion (Moore and Lewis, 2010; Axelrod, 2017; Feng et al.,

2022) selects examples with high cross-entropy difference

(similar to excess log-perplexity) between language models

trained on target and raw data. Coleman et al. (2020)

select examples based on the uncertainty of a small proxy

model for active learning. Mindermann et al. (2022) select

examples in an online fashion by taking the top k examples

in a minibatch according to excess loss. Many other works

on data selection are in vision (Sorscher et al., 2022; Kaushal

et al., 2019; Killamsetty et al., 2021b;a;c; Wang et al., 2020;

Wei et al., 2015; Paul et al., 2021; Mirzasoleiman et al.,

2020; Sener and Savarese, 2018). Overall, these methods

do not address data selection for pretraining, where the

downstream data distribution may be very different from

the pretraining distribution. DoReMi aims to address the

7

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Figure 6: Average downstream accuracy for models trained

on The Pile. (Top) Increasing the size of the reference/proxy

models from 70M to 280M in DoReMi improves downstream

accuracy for a 8B main model, but the trend does not continue

for the 1B proxy model. We hypothesize that the Group

DRO optimizer is worse for larger proxy models. Bottom)

optimizing for hardest or easiest domains rather than excess

loss (which combines both) do not achieve the same average

downstream accuracy as DoReMi (280M models).

pretraining/downstream distribution shift with DRO.

Distributionally robust optimization. Within DRO

methods for deep learning (Ben-Tal et al., 2013; Sinha et al.,

2018; Oren et al., 2019; Sagawa et al., 2020), we target

a restricted form of shift called group shifts (Duchi et al.,

2019; Oren et al., 2019; Sagawa et al., 2020), where the test

distribution can be an unknown mixture of groups (domains).

We follow DRO-LM (Oren et al., 2019), which employs

DRO for LMs in the group shift setting. DRO-LM also

uses a baselined loss, but with a simple bigram reference

model. DoReMi uses a reference model of the same size

and architecture as the proxy model to ensure that losses

can be compared. During optimization, DRO-LM takes a

worst-case subset of each minibatch to update the model

on, while we use the Group DRO optimizer (Sagawa et al.,

2020) which doesn’t require subselection. Subselection is

expensive since it requires evaluating the model on a large

minibatch, while only selecting a small fraction to update the

model with. Overall, in contrast to these DRO methods which

aim to produce robust models, we use DRO to optimize the

data for training larger models more efficiently.

6. Discussion and Limitations

Dependence on the training algorithm. Ideally,

DoReMi would be independent from the training algorithm,

but DoReMi runs the training algorithm to train the

reference/proxy models. Nonetheless, DoReMi achieves

algorithm-independence in some aspects: in Section 3.2,

we show that DoReMi domain weights transfer gains across

scales. In general, we expect the domain weights found by

DoReMi to transfer across a broad range of model scales,

compute budgets, and other training hyperparameters.

Saving compute in DoReMi with extrapolation. In

Section 2, we run DoReMi for the number of training steps

that will be used to train the final model, which could be

unnecessarily expensive. A future direction for saving

compute would be to stop running DoReMi at an early step

and extrapolate the domain weights for the desired number

of steps, since we found that most of the variation in the

domain weights during a DoReMi run seems to occur in the

beginning of training (Appendix Figure 8).

Choice of reference model. The choice of reference

model can affect the domain weights found by DoReMi.

For example, iterated DoReMi (Section 3) improves

performance by using a reference model trained on the tuned

domain weights from a previous round of DoReMi. Further

directions include varying the reference model size and

using specialized reference models to optimizing domain

weights for a specific application area.

What is a domain? We define a domain by data

provenance in our experiments, but this only enables

coarse-grained control. Using fine-grained domains could

improve the gains from DoReMi. For example, DoReMi

is more effective on The Pile (22 domains) than the GLaM

dataset (8 domains).

Broader impacts. We hope to improve training efficiency

and reduce the environmental impact of training large

LMs (Strubell et al., 2019; Lacoste et al., 2019; Patterson

et al., 2021; Ligozat et al., 2021). However, large LMs have

also been well-documented to have risks and biases (Abid

et al., 2021; Nadeem et al., 2020; Bommasani et al.,

2021; Blodgett and OConnor, 2017; Gehman et al., 2020).

DRO-style training, which aims to produce a model with

good performance on all domains, could have a favorable

impact on fairness, but this requires further investigation.

7. Conclusion

We introduced DoReMi, an algorithm reweighting data

domains for training language models. DoReMi is able to

run on small models and transfer the benefits to 30x larger

models, resulting in a 2.6x speedup in training on the Pile

just by changing the sampling probabilities on domains. We

hope to instigate more research on data-centric approaches

for improving language model training efficiency.

8

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Acknowledgments

We thank Xiangning Chen, Andrew Dai, Zoubin Ghahra-

mani, Balaji Lakshminarayanan, Paul Michel, Yonghui Wu,

Steven Zheng, Chen Zhu and the broader Google Bard team

members for insightful discussions and pointers.

References

Abubakar Abid, Maheen Farooqi, and James Zou. Persistent

anti-muslim bias in large language models. arXiv preprint

arXiv:2101.05783, 2021.

Amittai Axelrod. Cynical selection of language model

training data. CoRR, abs/1709.02279, 2017. URL

http://arxiv.org/abs/1709.02279.

Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere,

Bertrand Melenberg, and Gijs Rennen. Robust solutions of

optimization problems affected by uncertain probabilities.

Management Science, 59:341–357, 2013.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. Semantic parsing on Freebase from question-

answer pairs. In Empirical Methods in Natural Language

Processing (EMNLP), 2013.

Su Lin Blodgett and Brendan OConnor. Racial disparity

in natural language processing: A case study of social

media African-American English. arXiv preprint

arXiv:1707.00061, 2017.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ

Altman, Simran Arora, Sydney von Arx, Michael S. Bern-

stein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill,

Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo

Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,

Jared Quincy Davis, Dorottya Demszky, Chris Donahue,

Moussa Doumbouya, Esin Durmus, Stefano Ermon, John

Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn,

Trevor Gale, Lauren Gillespie, Karan Goel, Noah Good-

man, Shelby Grossman, Neel Guha, Tatsunori Hashimoto,

Peter Henderson, John Hewitt, Daniel E. Ho, Jenny

Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain,

Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti,

Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei

Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi,

Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure

Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li,

Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir

Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj

Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,

Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Ju-

lian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou,

Joon Sung Park, Chris Piech, Eva Portelance, Christopher

Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda

Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christo-

pher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam,

Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan

Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang,

William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu,

Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You,

Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun

Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and

Percy Liang. On the opportunities and risks of foundation

models. arXiv preprint arXiv:2108.07258, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-

lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,

Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,

Benjamin Chess, Jack Clark, Christopher Berner, Sam

McCandlish, Alec Radford, Ilya Sutskever, and Dario

Amodei. Language models are few-shot learners. arXiv

preprint arXiv:2005.14165, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,

Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul

Barham, Hyung Won Chung, Charles Sutton, Sebas-

tian Gehrmann, Parker Schuh, Kensen Shi, Sasha

Tsvyashchenko, Joshua Maynez, A. Rao, Parker Barnes,

Yi Tay, Noam M. Shazeer, Vinodkumar Prabhakaran,

Emily Reif, Nan Du, B. Hutchinson, Reiner Pope,

James Bradbury, Jacob Austin, M. Isard, Guy Gur-Ari,

Pengcheng Yin, Toju Duke, Anselm Levskaya, S. Ghe-

mawat, Sunipa Dev, Henryk Michalewski, Xavier García,

Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou,

Daphne Ippolito, D. Luan, Hyeontaek Lim, Barret Zoph,

A. Spiridonov, Ryan Sepassi, David Dohan, Shivani

Agrawal, Mark Omernick, Andrew M. Dai, T. S. Pillai,

Marie Pellat, Aitor Lewkowycz, E. Moreira, Rewon

Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou,

Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat,

Michele Catasta, Jason Wei, K. Meier-Hellstern, D. Eck,

J. Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling

language modeling with pathways. arXiv, 2022.

Cody Coleman, Christopher Yeh, Stephen Mussmann,

Baharan Mirzasoleiman, Peter Bailis, Percy Liang, Jure

Leskovec, and Matei Zaharia. Selection via proxy:

Efficient data selection for deep learning. In International

Conference on Learning Representations (ICLR), 2020.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,

Dmitry Lepikhin, Yuanzhong Xu, M. Krikun, Yanqi Zhou,

Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus,

Maarten Bosma, Zongwei Zhou, Tao Wang, Yu Emma

Wang, Kellie Webster, Marie Pellat, Kevin Robinson,

K. Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang,

9

http://arxiv.org/abs/1709.02279

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Quoc V. Le, Yonghui Wu, Zhifeng Chen, and Claire

Cui. GLaM: Efficient scaling of language models with

mixture-of-experts. arXiv, 2021.

John Duchi, Tatsunori Hashimoto, and Hongseok Namkoong.

Distributionally robust losses against mixture covariate

shifts. https://cs.stanford.edu/~thashim/

assets/publications/condrisk.pdf, 2019.

Yukun Feng, Patrick Xia, Benjamin Van Durme,

and João Sedoc. Automatic document selec-

tion for efficient encoder pretraining, 2022. URL

https://arxiv.org/abs/2210.10951.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding,

Travis Hoppe, Charles Foster, Jason Phang, Horace He,

Anish Thite, Noa Nabeshima, Shawn Presser, and Connor

Leahy. The pile: An 800gb dataset of diverse text for

language modeling. arXiv, 2020.

Samuel Gehman, Suchin Gururangan, Maarten Sap,

Yejin Choi, and Noah A Smith. Realtoxicityprompts:

Evaluating neural toxic degeneration in language models.

arXiv preprint arXiv:2009.11462, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,

Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego

de Las Casas, Lisa Anne Hendricks, Johannes Welbl,

Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican,

George van den Driessche, Bogdan Damoc, Aurelia Guy,

Simon Osindero, Karen Simonyan, Erich Elsen, Jack W.

Rae, Oriol Vinyals, and Laurent Sifre. An empirical

analysis of compute-optimal large language model

training. In Advances in Neural Information Processing

Systems (NeurIPS), 2022.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke

Zettlemoyer. TriviaQA: A large scale distantly super-

vised challenge dataset for reading comprehension. In

Association for Computational Linguistics (ACL), 2017.

Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan

Mahadev, Khoshrav Doctor, and Ganesh Ramakrishnan.

Learning from less data: A unified data subset selection

and active learning framework for computer vision.

IEEE/CVF Winter Conference on Applicatios of Computer

Vision (WACV), 2019.

Krishnateja Killamsetty, Durga S, Ganesh Ramakrishnan,

Abir De, and Rishabh Iyer. GRAD-MATCH: Gradient

matching based data subset selection for efficient deep

model training. In International Conference on Machine

Learning (ICML), 2021a.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh

Ramakrishnan, and Rishabh Iyer. Glister: Generalization

based data subset selection for efficient and robust

learning. In Association for the Advancement of Artificial

Intelligence (AAAI), 2021b.

Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and

Rishabh Iyer. Retrieve: Coreset selection for efficient and

robust semi-supervised learning. In Advances in Neural

Information Processing Systems (NeurIPS), 2021c.

Diederik Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In International Conference on

Learning Representations (ICLR), 2015.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield,

Michael Collins, Ankur Parikh, Chris Alberti, Danielle

Epstein, Illia Polosukhin, Matthew Kelcey, Jacob

Devlin, Kenton Lee, Kristina N. Toutanova, Llion Jones,

Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc

Le, and Slav Petrov. Natural questions: A benchmark

for question answering research. In Association for

Computational Linguistics (ACL), 2019.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and

Thomas Dandres. Quantifying the carbon emissions of ma-

chine learning. arXiv preprint arXiv:1910.09700, 2019.

Anne-Laure Ligozat, Julien Lefèvre, Aurélie Bugeau,

and Jacques Combaz. Unraveling the hidden

environmental impacts of AI solutions for envi-

ronment. CoRR, abs/2110.11822, 2021. URL

https://arxiv.org/abs/2110.11822.

Sören Mindermann, Jan Brauner, Muhammed Razzak,

Mrinank Sharma, Andreas Kirsch, Winnie Xu, Benedikt

Höltgen, Aidan N. Gomez, Adrien Morisot, Sebastian

Farquhar, and Yarin Gal. Prioritized training on points that

are learnable, worth learning, and not yet learnt. In Inter-

national Conference on Machine Learning (ICML), 2022.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec.

Coresets for data-efficient training of machine learning

models. In International Conference on Machine

Learning (ICML), 2020.

Robert C. Moore and William Lewis. Intelligent

selection of language model training data. In Pro-

ceedings of the ACL 2010 Conference Short Papers,

pages 220–224, Uppsala, Sweden, July 2010. As-

sociation for Computational Linguistics. URL

https://aclanthology.org/P10-2041.

Moin Nadeem, Anna Bethke, and Siva Reddy. Stereoset:

Measuring stereotypical bias in pretrained language

models. arXiv preprint arXiv:2004.09456, 2020.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and

Alexander Shapiro. Robust stochastic approximation

approach to stochastic programming. SIAM Journal on

optimization, 19(4):1574–1609, 2009.

10

https://cs.stanford.edu/~thashim/assets/publications/condrisk.pdf
https://cs.stanford.edu/~thashim/assets/publications/condrisk.pdf
https://arxiv.org/abs/2210.10951
https://arxiv.org/abs/2110.11822
https://aclanthology.org/P10-2041

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Yonatan Oren, Shiori Sagawa, Tatsunori Hashimoto, and

Percy Liang. Distributionally robust language modeling.

In Empirical Methods in Natural Language Processing

(EMNLP), 2019.

Denis Paperno, German Kruszewski, Angeliki Lazaridou,

Quan Ngoc Pham, Raffaella Bernardi, Sandro Pezzelle,

Marco Baroni, Gemma Boleda, and Raquel Fernandez.

The LAMBADA dataset: Word prediction requiring a

broad discourse context. In Association for Computational

Linguistics (ACL), 2016.

David A. Patterson, Joseph Gonzalez, Quoc V.

Le, Chen Liang, Lluis-Miquel Munguia, Daniel

Rothchild, David R. So, Maud Texier, and Jeff

Dean. Carbon emissions and large neural network

training. CoRR, abs/2104.10350, 2021. URL

https://arxiv.org/abs/2104.10350.

Mansheej Paul, Surya Ganguli, and Gintare Karolina

Dziugaite. Deep learning on a data diet: Finding

important examples early in training. In Association for

the Advancement of Artificial Intelligence (AAAI), 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,

Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,

and Peter J. Liu. Exploring the limits of transfer learning

with a unified text-to-text transformer. arXiv preprint

arXiv:1910.10683, 2019.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what

you don’t know: Unanswerable questions for SQuAD. In

Association for Computational Linguistics (ACL), 2018.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and

Percy Liang. Distributionally robust neural networks

for group shifts: On the importance of regularization for

worst-case generalization. In International Conference

on Learning Representations (ICLR), 2020.

Ozan Sener and Silvio Savarese. Active learning for

convolutional neural networks: A core-set approach. In

International Conference on Learning Representations

(ICLR), 2018.

Noam Shazeer and Mitchell Stern. 2018.

Aman Sinha, Hongseok Namkoong, and John Duchi.

Certifiable distributional robustness with principled

adversarial training. In International Conference on

Learning Representations (ICLR), 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practi-

cal Bayesian optimization of machine learning algorithms.

In Advances in Neural Information Processing Systems

(NeurIPS), 2012.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya

Ganguli, and Ari S. Morcos. Beyond neural scaling laws:

beating power law scaling via data pruning. arXiv, 2022.

Emma Strubell, Ananya Ganesh, and Andrew McCallum.

Energy and policy considerations for deep learning in

NLP. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, pages

3645–3650, Florence, Italy, July 2019. Association for

Computational Linguistics. doi: 10.18653/v1/P19-1355.

URL https://aclanthology.org/P19-1355.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,

and Illia Polosukhin. Attention is all you need. arXiv

preprint arXiv:1706.03762, 2017.

Xinyi Wang, Hieu Pham, Paul Michel, Antonios Anas-

tasopoulos, Jaime Carbonell, and Graham Neubig.

Optimizing data usage via differentiable rewards. In Inter-

national Conference on Machine Learning (ICML), 2020.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in

data subset selection and active learning. In International

Conference on Machine Learning (ICML), 2015.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy

Liang. Data selection for language models via importance

resampling. arXiv preprint arXiv:2302.03169, 2023.

Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016.

11

https://arxiv.org/abs/2104.10350
https://aclanthology.org/P19-1355

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

(a) 280M (b) 510M

(c) 760M (d) 1B

Figure 7: Average one-shot downstream accuracy across 4 model scales, where the reference/proxy models for DoReMi

are the same size as the final model trained with DoReMi domain weights. All models in this figure are trained on the GLaM

dataset. DoReMi consistently improves downstream accuracy across scales.

A. Results Across Scales on the GLaM dataset

Figure 7 presents results across different scales (280M, 510M, 760M, 1B) on the GLaM dataset, where the proxy/reference

models are the same size as the main model trained with DoReMi domain weights. Across all scales, DoReMi is comparable

or better than both the baseline (uniform) domain weights and downstream-tuned domain weights. Interestingly, for iterated

DoReMi at the 280M scale, the second round weights achieve slightly worse downstream accuracy than the round 1 weights

when used to train 280M models, but transfer better to training 8B models.

B. Detailed Results for The Pile

Per-domain perplexities for 8B models. Table 4 shows per-domain perplexities for 8B models trained on the Pile. The

reference/proxy models in this case are 70M, 150M, 280M, and 1B. DoReMi improves the perplexity on each domain

compared to the baseline domain weights.

Per-task accuracies for 8B models. Table 5 shows the accuracies on one-shot generative tasks for various reference/proxy

model sizes from 70M to 1B. All DoReMi models improve downstream performance significantly over the baseline.

Summary of perplexity results across scales. Table 6 shows a summary of per-domain perplexities for DoReMi across 4

scales (280M, 510M, 760M, 1B). Here, the reference/proxy models are the same size as the main model trained with DoReMi

12

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Table 4: Per-domain perplexities for 8B models trained on The Pile where the reference/proxy models are or smaller sizes

(70M, 150M, 280M, 1B). Models trained with DoReMi domain weights have lower perplexity on all domains than the

baseline weights.

Baseline (8B) DoReMi (70M->8B) DoReMi (150M->8B) DoReMi (280M->8B) DoReMi (1B->8B)

Pile-CC 1.64 1.51 1.48 1.41 1.55

PubMed Central 1.60 1.58 1.54 1.46 1.56

Books3 1.65 1.52 1.50 1.42 1.57

OpenWebText2 1.66 1.48 1.54 1.36 1.58

ArXiv 1.64 1.56 1.53 1.38 1.51

Github 1.65 1.55 1.54 1.42 1.53

FreeLaw 1.64 1.55 1.54 1.45 1.55

StackExchange 1.61 1.52 1.54 1.39 1.55

USPTO Backgrounds 1.70 1.53 1.50 1.41 1.56

PubMed Abstracts 1.61 1.56 1.51 1.44 1.55

Gutenberg (PG-19) 1.70 1.56 1.54 1.35 1.52

OpenSubtitles 1.58 1.56 1.52 1.40 1.55

Wikipedia (en) 1.66 1.49 1.53 1.35 1.56

DM Mathematics 1.63 1.50 1.56 1.38 1.48

Ubuntu IRC 1.71 1.53 1.49 1.42 1.48

BookCorpus2 1.64 1.57 1.54 1.43 1.57

EuroParl 1.59 1.52 1.51 1.37 1.53

HackerNews 1.66 1.50 1.55 1.45 1.55

YoutubeSubtitles 1.67 1.63 1.55 1.42 1.53

PhilPapers 1.67 1.55 1.49 1.39 1.53

NIH ExPorter 1.63 1.51 1.48 1.36 1.52

Enron Emails 1.62 1.48 1.52 1.44 1.56

Table 5: Per-task exact-match accuracies for generative one-shot tasks. All DoReMi models improve downstream performance

significantly over the baseline domain weights.

Baseline DoReMi (1B->8B) DoReMi (280M->8B) DoReMi (150M->8B) DoReMi (70M->8B)

LAMBADA 20.10 22.55 29.19 20.59 26.20

NaturalQuestions 4.35 6.01 7.73 6.26 5.10

SQuADv2 44.43 42.22 51.89 46.53 40.99

TriviaQA 24.55 32.25 34.86 30.01 26.30

WebQuestions 6.74 8.71 9.15 9.15 6.99

Average 20.03 22.35 26.56 22.51 21.11

Table 6: Summary of per-domain perplexities for 280M, 510M, 760M, and 1B models trained on The Pile, where the

reference/proxy models are the same size. DoReMi improves the worst-case and average perplexity of the baseline domain

weights in all cases. On average, DoReMi improves perplexity on 18 out of 22 domains.

Worst-case pplx Avg pplx # domains besting baseline

Baseline (280M) 2.39 2.32 0/22

DoReMi (280M->280M) 2.19 2.13 22/22

Proxy (280M) 2.33 2.27 19/22

Baseline (510M) 2.14 2.08 0/22

DoReMi (510M->510M) 2.14 2.06 15/22

Proxy (510M) 2.23 2.18 0/22

Baseline (760M) 2.05 1.97 0/22

DoReMi (760M->760M) 2.00 1.94 17/22

Proxy (760M) 2.15 2.10 0/22

Baseline (1B) 1.94 1.87 0/22

DoReMi (1B->1B) 1.92 1.83 19/22

Proxy (1B) 2.11 2.02 0/22

13

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Table 7: Summary of perplexity results for ablations on the DRO objective (excess loss). The individual components (which

prefer hardest and easiest domains respectively) do not reduce perplexity over the baseline.

Worst-case pplx Avg pplx # domains besting baseline

Baseline (280M) 2.39 2.32 0

DoReMi (280M->280M) 2.19 2.13 22/22

Hardest (280M->280M) 2.66 2.62 0/22

Easiest (280M->280M) 4.27 4.18 0/22

Table 8: Domain weights on The Pile. Baseline domain weights are computed from the default Pile dataset. With different

proxy model sizes, DoReMi (280M) and DoReMi (1B) result in different domain weights. Despite the differences, the

qualitative patterns are similar other than the which web domain has the most weight.

Baseline DoReMi (280M) DoReMi (1B)

Pile-CC 0.1121 0.6057 0.1199

PubMed Central 0.1071 0.0046 0.0149

Books3 0.0676 0.0224 0.0739

OpenWebText2 0.1247 0.1019 0.3289

ArXiv 0.1052 0.0036 0.0384

Github 0.0427 0.0179 0.0129

FreeLaw 0.0386 0.0043 0.0148

StackExchange 0.0929 0.0153 0.0452

USPTO Backgrounds 0.0420 0.0036 0.0260

PubMed Abstracts 0.0845 0.0113 0.1461

Gutenberg (PG-19) 0.0199 0.0072 0.0250

OpenSubtitles 0.0124 0.0047 0.0017

Wikipedia (en) 0.0919 0.0699 0.0962

DM Mathematics 0.0198 0.0018 0.0004

Ubuntu IRC 0.0074 0.0093 0.0044

BookCorpus2 0.0044 0.0061 0.0029

EuroParl 0.0043 0.0062 0.0078

HackerNews 0.0075 0.0134 0.0058

YoutubeSubtitles 0.0042 0.0502 0.0159

PhilPapers 0.0027 0.0274 0.0063

NIH ExPorter 0.0052 0.0063 0.0094

Enron Emails 0.0030 0.0070 0.0033

domain weights. On average, DoReMi improves perplexity on 18.25 out of 22 domains from The Pile. The worst-case

perplexity is always reduced (or comparable in the 510M case) with respect to the baseline domain weights.

Perplexity results for ablations. Table 7 shows the perplexities for ablations on the DRO objective. We change the DRO

objective and use these to tune domain weights on 280M reference/proxy models. These tuned domain weights are then

used to train a main 280M model. Hardest refers to optimizing the domain-level log-perplexity without baselining with a

reference model. Easiest refers to optimizing for the domains with lowest log-perplexity under the reference model. Both

ablations do not improve perplexity on any domain over the baseline. Optimizing for the “hardest” domain does not actually

result in improving worst-case perplexity, supporting the results of Oren et al. (2019), which also employs DRO for language

modeling with a baselined loss.

Trajectory of domain weights. Figure 8 shows the exponential moving average (smoothing parameter 0.99) of domain

weights during a run of DoReMi. In both cases, there are domains with very high weight initially and decrease in weight very

quickly (within 50k steps). Since we compute the final domain weights by integrating these curves over steps and normalizing,

this suggests that if we have a smaller compute budget, these domains could become more important — this highlights the

dependence of the mixture weights on the compute budget. At the same time, the domain weights tend to quickly stabilize

after 50k steps, suggesting that the optimal domain weights should be similar for larger compute budgets. We may also be

able to take advantage of this stability after 50k steps to run DoReMi for a smaller number of steps and extrapolate the domain

weights to save compute.

14

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

0 50000 100000 150000 200000
Steps

0.0

0.2

0.4

0.6

W
ei

gh
t

Pile-CC
PubMed Central
Books3
OpenWebText2
ArXiv
Github
FreeLaw
StackExchange
USPTO Backgrounds
PubMed Abstracts
Gutenberg (PG-19)

OpenSubtitles
Wikipedia (en)
DM Mathematics
Ubuntu IRC
BookCorpus2
EuroParl
HackerNews
YoutubeSubtitles
PhilPapers
NIH ExPorter
Enron Emails

(a) 280M

0 50000 100000 150000 200000
Steps

0.0

0.2

0.4

0.6

W
ei

gh
t

Pile-CC
PubMed Central
Books3
OpenWebText2
ArXiv
Github
FreeLaw
StackExchange
USPTO Backgrounds
PubMed Abstracts
Gutenberg (PG-19)

OpenSubtitles
Wikipedia (en)
DM Mathematics
Ubuntu IRC
BookCorpus2
EuroParl
HackerNews
YoutubeSubtitles
PhilPapers
NIH ExPorter
Enron Emails

(b) 1B

Figure 8: Exponential moving average of domain weights throughout a DoReMi run for 280M and 1B reference/proxy models.

In the beginning of the run, the domain weights change quickly and then become more stable after 50k steps. This suggests

that 1) smaller compute budgets may require drastically different domain weights, and 2) we may be able to save compute

by extrapolating the domain weights after 50k steps.

Comparison of domain weights for 280M and 1B. Table 8 presents the DoReMi domain weights for The Pile at 280M

and 1B proxy models. Different proxy model sizes can result in different domain weights, which suggests that there may

be multiple local minima in domain weight space. With a 280M proxy model, most of the weight is put on the Pile-CC web

text domain, while DoReMi with a 1B proxy model puts most of the weight on OpenWebText2. The overall pattern of the

domain weights for the rest of the domains are similar.

C. Training Details

Data preprocessing. For all datasets, we preprocessed the data by chunking into length 1024 examples with respect to a

SentencePiece tokenizer with 256k vocabulary size. The examples are separated by domain to facilitate hierarchical sampling

(first sample a domain according to some domain weights, then sample an example from that domain at random). To reduce

the amount of padding tokens, we made an effort to pack examples (possibly from different domains) together into the same

sequence. When doing such a packing, we compute the domain perplexities on a per-token level in DoReMi.

Baseline domain weights for The Pile. The baseline domain weights for The Pile were computed from The Pile dataset

and the number of epochs for each domain given in Gao et al. (2020). After chunking into length 1024 examples, we counted

the number of examples in each domain and multiplied by the number of epochs that domain specified in Gao et al. (2020).

We then normalized these counts to obtain the baseline domain weights.

15

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Table 9: Architecture hyperparameters for various model scales used in the paper. All models are vanilla Transformer

decoder-only models and use vocabulary size 256k.

Layers Attention heads Attention head dim Model dim Hidden dim

70M 3 4 64 256 1024

150M 6 8 64 512 2048

280M 12 12 64 768 3072

510M 12 16 64 1024 8192

760M 12 20 64 1280 8192

1B 16 32 64 2048 8192

8B 32 32 128 4096 24576

Training setup. For all training runs (including DRO runs), we train with a batch size of 512, initial learning rate of 1e-3,

weight decay of 1e-2, and gradient clipping to norm 1. We decay the learning rate exponentially until it reaches a minimum

of 1e-4 at the end of training, with a linear warmup of 6% of the total training steps. We train for 200k steps on The Pile

and 300k steps on the GLaM dataset. Models under 1B parameters were trained with TPUv3 accelerators, while 1B and

8B models were trained with TPUv4.

Model architectures. Table 9 shows the architecture hyperparameters for the model sizes used in the paper. All the models

we use are vanilla Transformer decoder-only models with a 256k vocab size.

D. Simple Example Where Data Reweighting Has No Tradeoff

Motivated by the findings in Section 3.2, we present a simple language modeling example where reweighting the training

data from different domains improves perplexity on all domains. The example shows that DoReMi downweights domains

that are extremely high or low entropy.

Setup. Suppose the ground-truth distribution of text p∗ is a mixture over k domains, where each domain z∈{1,...,k} is de-

fined by a different unigram distributionp∗(x |z)overm tokens. Given a budget ofn training samples, the goal is choose domain

weights p(z) (k scalars that add to 1) to sample training data with such that we learn the parameters of the unigram distributions

p∗(· |z) well for all z from 1 to k. Notably, we do not aim to estimate the ground truth mixture proportions across domains.

Data. Given some domain weights p(z), we sample training data hierarchically: first we determine the number of samples

nz per domain z by drawing from a multinomial distribution over k possibilities with probabilities defined by p(z) and n
total trials. Then, for each domain z, we sample nz tokens from p∗(· |z), forming a vector of tokens Xz with length nz .

Model. For each domain z, we consider a Bayesian model of the unigram distribution p(x | z;θ) with a Dirichlet prior

p(θ | z;β) over the unigram distribution parameters θ∈∆m. The Dirichlet prior has hyperparameters β ∈Rm, which can

be viewed as a “pseudo-count” for each token. For each domain z, we estimate the parameters θ̂z by computing the mean

of the posterior distribution conditioned on the data:

θ̂z(x)=
1

nz+sz

[

λz(x)+

nz
∑

i=1

1[Xz[i]=x]

]

for all x∈{1,...,m} (2)

where sz=
∑

xλz(x) is the sum of pseudocounts.

For a domain z, we can write the parameter error of this estimator as a function of the “difficulty” Hz of predicting the next

token and the “quality” of the prior ∆z , defined below.

Lemma D.1. For domain index z with nz samples, the parameter error is

∑

x

E[(θ̂z(x)−p
∗(x |z))2]=

nzHz+s2z∆z

(nz+sz)2
(3)

16

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

where

Hz=
∑

x

p∗(x |z)(1−p∗(x |z)) (4)

∆z=
∑

x

(

p∗(x |z)−
λz(x)

sz

)2

. (5)

Proof. The parameter error is

∑

x

E[(θ̂z(x)−p
∗(x |z))2]=

∑

x

E[θ̂z(x)
2]−2E[θ̂z(x)]p

∗(x |z)+p∗(x |z)2. (6)

Evaluating the terms separately,

E[θ̂z(x)]=
1

nz+sz

[

λz(x)+

nz
∑

i=1

1[Xz[i]=x]

]

(7)

=
1

nz+sz
(λz(x)+nzp

∗(x |z)) (8)

E[θ̂z(x)
2]=

1

(nz+sz)2
E[(λz(x)+

nz
∑

i=1

1[Xz[i]=x])2] (9)

=
1

(nz+sz)2
[

λz(x)
2+2λz(x)nzp

∗(x |z)+nzp
∗(x |z)+(n2

z−nz)p
∗(x |z)2

]

(10)

Putting it all together, the parameter error can be written as

∑

x

E[(θ̂z(x)−p
∗(x |z))2]=

∑

x

(s2z−nz)p
∗(x |z)2+λz(x)

2+(nz−2szλz(x))p
∗(x |z)

(nz+sz)2
(11)

=
∑

x

nzp
∗(x |z)(1−p∗(x |z))+s2z

(

p∗(x |z)− λz(x)
sz

)2

(nz+sz)2
(12)

=
nzHz+s2z∆z

(nz+sz)2
. (13)

No-tradeoff example. Suppose there are 3 domains z ∈ {1,2,3} and m= 3 vocabulary tokens x ∈ {1,2,3}. We use a

symmetric Dirichlet prior (preferring a uniform token distribution) where λz(x)=1/3 for all tokens x and domains z. Here,

sz=
∑

xλz(x)=1. In this setting, we show that there is a set of domain weights that has strictly lower parameter error than

the baseline where we sample the same number of tokens from each domain: nz are equal for all domains z.

Suppose the ground truth paramaters for the unigram distributions are

1 0 0
0.7 0.2 0.1
1/3 1/3 1/3

, (14)

where row z contains the parameters for domain z. For example, token 1 has probability 1 under domain 1’s unigram

distribution.

For domain z=1 (non-noisy domain), we have H1=0 so the parameter error (according to Lemma D.1) is

s21∆1

(n1+s1)2
(15)

which is strictly decreasing in the number of samples n1.

17

DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

For domain z=3 (noisy domain), we have ∆3=0 so the parameter error is

n3H3

(n3+s3)2
, (16)

by Lemma D.1. This error is minimized to zero at n3=0 (no samples). This means that we can allocate samples elsewhere

while still reducing error.

For z=2 (intermediate entropy domain), we have ∆2 =0.207 and H2 =0.46. The derivative of the parameter error with

respect to the number of samples n2 is

∂

∂n2

n2H2+s22∆2

(n2+s2)2
=

H2(s2−n2)−2s
2
2∆2

(n2+s2)3
(17)

which is negative when

n2>s2−
2s22∆2

H2
. (18)

This inequality holds in this case since 2∆2

H2

< 1 and s2 =1. Therefore the parameter error is decreasing in the number of

samples n2.

Thus, any domain weights that reallocate the examples from domain 3 to domains 1 and 2 reduces the parameter error for

all domains.

What kind of domains are downweighted? Intuitively, we can downweight the very noisy (high entropy/difficulty)

domain 3 because the initialization perfectly matches the ground truth. This allows us to reallocate samples to the other

domains 1 and 2. Between these, domain 1 requires less additional samples since the parameter error decreases very quickly

with the number of samples n1 (the difficulty H1 is zero). Thus, the easiest domains should also receive relatively less weight.

In practice, positive transfer between domains (which is not captured here) can also contribute to scenarios where reweighting

results in no tradeoff across domains.

Simulation with DoReMi. We consider running DoReMi on the above no-tradeoff instance of the simple example with the

ground truth unigram distributions in Equation 14. Note that DoReMi’s domain reweighting step (Step 2, Algorithm 1) involves

a loop over T iterative model updates, while the estimator from Equation 2 is computed in closed form. To adapt the estimator

for DoReMi, we consider an iterative version where the average is computed in an online fashion. We run DoReMi for T =500
steps using minibatch size 1 over the n=500 training examples with domain weight update rate η=0.5. For the model update

at step t on an example x from domain z, we increase the pseudo-count θ̂z(x) by the current domain weight αt corresponding

to domain z. Instead of using the examples in the minibatch (which is only size 1 and doesn’t represent all domains), we

compute the per-domain excess log-perplexities in Algorithm 1 using a fixed, independent evaluation set of 30 examples.

We compare DoReMi against a model trained with baseline domain weights, which are uniform over the 3 domains. All

models are trained on n=500 training examples. We evaluate the log-perplexity of a model on each domain in closed form

using the ground truth unigram distribution parameters.

On this simple example, DoReMi returns domain weights [0.39,0.61,0.0] after rounding to 2 decimal places. These weights

correspond to our intuitions — the first domain (non-noisy) is increased by a small amount, the third domain (noisy) is decreased

to 0 weight, and most of the weight is allocated to the second domain. We use these domain weights to generate a new dataset

of 500 examples. The model trained with this new dataset improves over the baseline model in perplexity on all domains.

18

